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Abstract
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State
Phys. 7 179) and is devoted to the calculations of average conductivity of
random resistor networks placed on an anisotropic Bethe lattice. The structure
of the Bethe lattice is assumed to represent the normal directions of the regular
lattice. We calculate the anisotropic conductivity as an expansion in powers of
the inverse coordination number of the Bethe lattice. The expansion terms
retained deliver an accurate approximation of the conductivity at resistor
concentrations above the percolation threshold. We make a comparison of
our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for
the regular lattice.

PACS numbers: 72.80.Tm, 05.50.+q, 05.60.Cd, 05.70.Jk

1. Introduction

The random percolation theory due to Broadbent and Hammersley [1] is too simple to explain
the great variety of percolation phenomena. One confronts complexity of real systems with
both correlations and anisotropy playing an important role. The motivation for our study is to
understand better the nature of the anisotropy in electrical conductivity of percolating systems.
This is approached by means of the random resistor network (RRN) originally proposed by
Kirkpatrik [2]. The resistor networks can be associated with the networks of saddle points in
the conductivity profile of high-contrast systems as proved in [3]. Besides conductivity, RRN
has been used to predict magnetic properties of materials [4] and even to estimate sample
destruction under critical mechanical stress [5]. In the past there had been several propositions
of the anisotropic percolation theories based on an assumption that the lattice bond occupation
probability is dependent on the spatial orientations [6–10]. As a result, these theories associate
the direction with the percolation threshold too, which, however, may not be true in the
case of composites filled by long sticks. As found in the Monte Carlo simulations [11],
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the percolation threshold measured in the directions parallel and normal to the direction of the
average orientation merge to a single value in the limit of infinitely large length of the sticks.
Another class of anisotropic percolation theories [12, 13] assumes the occupation probability
to be independent of the spatial directions, whereas the local conductivity is assumed to be
a direction-dependent property. Unfortunately, all these theories cannot describe a peculiar
phenomenon observed in geophysics. The Earth mantle exhibits the scale-dependent behavior
of its conductivity anisotropy, namely its macroscopic anisotropy is much more pronounced
than the microscopic one. This seems to be an indication of the fractal nature of the geological
networks, see [14, 15] and references therein. The latter together with the fact that Earth
drainage networks have a tree-like topology [16] makes us to believe that the topology of the
resistor network behind the conductive property of the Earth mantle may also be tree-like in
nature.

Using the exact Bethe lattice solution obtained by Stinchcombe [17], we propose an
anisotropic RNN model that combines both the advantage of the recursive structure of a tree
and the notion of a direction. In the present contribution, it will be demonstrated that the latter,
being geometrically clear on a regular lattice, can be associated with the Bethe lattice as well.
Unfortunately, the original paper [17] has given rise to a highly puzzling and controversial
issue [13, 18] regarding the critical exponent 2 being close to the real value in 3D instead
of the expected mean-field value of 3 [19]. To make the situation even more confusing, it
was observed [20, 21] that Stinchcombe’s solution serves as a very good approximation to the
macroscopic conductivity of the resistor network on the regular 3D lattice. As highlighted by
the present state of understanding of this problem [22], those two facts are just the matter of
mere coincidence.

To refute this strongly negative disposition, we want to show that the correlations captured
by the Bethe lattice, being controlled by the coordination number z, are sufficient to produce
a very good fit to the exact solution of Bernasconi [12] for the anisotropic RNN on the regular
lattice. The latter applies when the occupation probability is well above the critical point. At
the same time, it is well known that the correlations captured are not sufficient to obtain the
right critical exponents.

Technically, we generalize the Stinchcombe’s calculation to the case of the anisotropic
Bethe lattice, see figure 1. Besides the absence of closed loops, this structure has a special
feature of being anisotropic at each node. Specifically, there are nα bonds of α kind and nβ

bonds of β kind connected at each branching point. At the same time, their total sum at a
node is equal to a constant number z referred to as the coordination number of the lattice. We
would like to stress that there is a large difference between the finite Bethe lattice, known also
as the Cayley tree, and the infinite lattice with the surface sites neglected by definition, the
difference being carefully discussed by Gujrati and Bowman [23].

The outline of the paper is as follows: in section 2, we present the model and mathematical
formulation of the problem; in section 3, we present the main results; in section 4, we describe
our verification of the theory with the exact solution of Bernasconi; in section 5, we describe
the connection with the experiment and in section 6, we provide a discussion and conclusions.
Appendices A–C provide the details of our computation.

2. Model

Unlike several previous anisotropic percolation theories [6–10] based on the model of different
probabilities of filling for two types of lattice bonds, we consider the distribution of resistors
to be isotropic. However, we make the local conductivities of the network elements on this
special Bethe lattice to be a ‘direction’-dependent, i.e. equal to σα and σβ for α and β occupied
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bonds, respectively. The lattice itself is considered to be non-conductive. Thus, the resistors,
associated with occupied bonds of the lattice, are the only conductive objects forming a tree-
like network. In the mathematical form, the local conductivity distribution function is written
as follows:

gα(σ ) = pδ(σ − σα) + (1 − p)δ(σ ), (1)

where p is the bond occupation probability, common for the bonds of both types. Given p
and the conductivities of network elements, σα and σβ , we compute the average conductivity
of the network connected to a constant potential source at the origin and grounded at infinity.
The question how to perform configurational averages turns out to be a difficult one.

A starting point of the present development is the observation that the percolation threshold
is given by the usual equation [24]:

pc = 1/(z − 1), (2)

as its derivation does not require considerations of conductivity as such. This is the
consequence of the occupation probability common for the bonds of both kinds.

Further, we define the probability distribution functions, φα(b) and φβ(b), for the average
conductivity of a branch being some value b,∫ ∞

0
φα(b) db = 1. (3)

Those functions measure the contribution from averaging over the ensemble sampled by
resistor permutations, so that the average branch conductivity is given by

bα =
∫ ∞

0
bφα(b) db. (4)

Here, the symmetry α ↔ β holds for all quantities. Note that we specified in (3) and (4)
the α-components, only, for the sake of brevity. The second equation is obtained readily using
the α ↔ β interchange. This convention is followed everywhere in the text.

The average conductivity of a part of the tree consisting of nα branches connected at the
origin in parallel is

σα = nα bα. (5)

As an example, one can take nα = n and nβ = z − n, which leads to n − 1 and z−n of α- and
β-subbranches, respectively, for the α branch (see figure 1). In order to compute φα(b) and
φβ(b) we use the algorithm of [17] modified to account for the lattice anisotropic structure,
detailed calculation is given in appendices A–C.

3. Results

The analytical solutions have been obtained for the two cases: (I) for the case of infinitely large
coordination number, z → ∞ and (II) near the percolation threshold, p ≈ pc. In both cases,
the solution is represented in the form of a Taylor expansion in terms of the small parameters,
pc = (z − 1)−1 and ε = (p − pc)/pc, respectively.

In the first case, we obtain (see appendix B for details)

bα(I) = −σα

(
− pσβ�

σαpc + σβ�
+

�

p

∞∑
k=2

G(k)

)
, (6)
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O

subbranch

branch

Figure 1. Anisotropic Bethe lattice of coordination number z = 3 with two kinds of bonds, α

and β, depicted by solid and dashed lines. The center O, referred to as origin, is where nα and
nβ branches are connected by their root bonds of α and β kind, respectively. z = nα + nβ . Each
branch is made of z − 1 subbranches connected together by their root bonds.

where

G(2) = p2
c

p2
�s,

G(3) = p3
c

p5
�2s[p(2p − 1) + 3�s],

G(4) = p4
c

p6
�2s

[
3s2� − 2sp + �(1 − 3p + 3p2) + 10�2s

(
2p − 1

p

)
+ 15�3s2 1

p2

]
,

G(k) = O
(
pk

c

)
,

� = p − pc and s = 1 − p.

(7)

This equation gives the average conductivity of a branch starting from the α-bond connected to
a potential difference between the node at its root and the nodes at infinity. The first term is the
conductivity of the infinitely branched Bethe lattice, while the summation over Gs represents
the corrections up to and including the (z − 1)−4 order. To understand the differences with
the isotropic case, we reproduce the expression obtained by Stinchcombe [17]:

biso(I) = σ

(
� −

∞∑
k=2

G(k)

)
, (8)

with G(2) and G(3) the same as in (7), but G(4) being given by

G(4) = p4
c

p6
�2s

[
3s2� − 2sp + �(1 − 3p + 3p2) + 5�2s

(
2p − 1

p

)
+ 15�3s2 1

p2

]
. (9)

In the isotropic case, σα = σβ = σ , one finds that equation (8) is different from our result
by the factor �/p before the summation. In addition, equation (9) contains the factor 5 in
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front of �2s
( 2p−1

p

)
different to 10 we have. We want point out that these discrepancies play a

minor numerical role in the isotropic case as will be demonstrated in the next section.
We now calculate the critical exponents and the anisotropy near the percolation threshold,

p ≈ pc. The details of the calculation are shown in appendix C. Close to the critical point,
the integer numbers nβ and nα are set by

nασβ = nβσα, (10)

received from the symmetry considerations, equation (C.14). Qualitatively, this can be
explained as follows: Bethe lattice, with its origin O representing a point inside the sample, has
the branching topology of the infinite cluster. Suppose the system is just above pc. Although
the formation of the spanning cluster is a topological concept, it is qualitatively clear that the
physics at pc is dominated by singly connected bonds that are present on all length scales,
which made Skal and Shklovskii [25] and de Gennes [26] to postulate that within each box of
size of the correlation length ξ there is only one chain of bonds that connects its opposite edges,
see also [24]. Thus, it is possible to associate the average direction of these chains with the
average direction of the infinite cluster, which should be the direction where the resistance to
current is minimal. For the case when the occupation probability p is the same in all directions,
the direction-dependent percolation probability can only be achieved if the fraction of bonds
of one kind is larger than the other. Indeed, the isotropic percolation probability P = 1 − Rz,
where R < 1 is the probability of having the finite cluster [24], can be generalized to the
anisotropic one, Pα = 1 − Rnα , which gives Pα > Pβ if nα > nβ . This leads to the following
conditions:

nα = zσα

σα + σβ

, nβ = z − nα. (11)

Thus, nα and nβ are fixed by the local conductivities.
Returning for a moment to the previous case, we note that the Bethe lattice topology

should be intact on the change of p. Thus, condition (11) has also to be applied above the
critical point to obtain σα(I) from equations (5) and (6):

σα(I) = zσα

σα + σβ

bα(I). (12)

In the critical region, we investigate the anisotropy ratio of the network conductivities and
relate this to the experimental quantity σ‖/σ⊥, where σ ‖,⊥ are the bulk conductivities parallel
and normal to the direction of an applied voltage. According to Skal and Shklovskii [25],

σ‖/σ⊥ � 1 + (p − pc)
λ(d), (13)

where λ(d) is a critical exponent determined by d—the dimensionality of a problem.
Straley [13], who first studied the conductivity exponent on the anisotropic Bethe lattice

near the percolation threshold, obtained the anisotropy critical exponent λ = 1. Sarychev and
Vinogradov [27] using the renormalization group theory and computer simulations found that
λ(2) = 0.9±0.1 and λ(3) = 0.3±0.1 for 2D and 3D, respectively. Carmona and Amarti [28]
deduced from experimental data for short carbon fiber reinforced polymers that λ(3) ≈ 0.4.
The details of our computation are given in appendix C. Our final result (C.21), written in a
more concise form, is given by

σα(II) = 0.762
z

z − 2

2σασβ

σα + σβ

ε2 + O(ε3), (14)

where ε = (p − pc)/pc. We also calculated the average anisotropy ratio near the percolation
threshold (C.23):

σα/σβ = 1 +
z − 1

z

σ 2
α − σ 2

β

σασβ

ε + O(ε2). (15)
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This result is analogous to (13) for the case when α and β are associated with the parallel and
the perpendicular components, respectively. Thus, we receive the critical exponent, λ = 1,
which is consistent with the exponent obtained by Straley [13] by an analogous method.

4. Comparison with the exact solution of Bernasconi

The topology of the Bethe lattice is quite different from the regular lattice, but it turns out that
both models produce almost the same values of conductivity normalized to the corresponding
maximum at full occupation. To achieve this correspondence, one uses the Bethe lattice with
z = 3 and 4 and the regular lattice of 2D and 3D, respectively. To verify this we compare it
with the exact solution of Bernasconi [12]. In the two-dimensional case, the exact solution on
the square lattice is given by

x = 2

π
arctan

[
x(p − x)

a(1 − x)(x + p − 1)

]1/2

, (16)

which needs to be solved for x and substituted into

σ̄‖ = σ‖
p − x

1 − x
, σ̄⊥ = σ⊥

x + p − 1

x
(17)

to obtain the average network conductivity with the conductive elements σ‖,⊥ = σα,β . In the
three-dimensional case of the uniaxial symmetry, Bernasconi provides the equation

x = 2/π arctan[2U + U 2]−1/2, (18)

with

U = a(1 − x)(2p − 1 + x)

(1 + x)(p − x)
, (19)

which needs to be solved for x and substituted into

σ̄‖ = σ‖
p − x

1 − x
, σ̄⊥ = σ⊥

2p − 1 + x

1 + x
. (20)

The latter two equations can be derived in analogy with the 2D case following Bernasconi.
We find that both approaches give very close predictions for a moderate anisotropy in the
range of a � 0.3 . . . 1, see figure 2. The factor �/p in (6) makes the fit better, especially
for the averaged component corresponding to the preferential conductivity direction. The
deviations start to become significant at higher values of anisotropy, a < 0.3. It is clear that
the discrepancy is not due to the finite number of expansion terms over (z − 1)−1, since the
truncation of the summation in (6) at k = 2, i.e. neglecting the k = 3, 4 terms, preserves the
good fit in the interval [0.3 . . . 1] (not shown here). Apparently, the correlations due to the
loops of the regular lattice start to play more and more pronounced role upon the increase of
the intrinsic anisotropy.

In view of quite good conformity of the theory for z = 3, 4 and the conductivity on the
regular 2D and 3D lattice for moderate anisotropies, it becomes clear: (a) the fact of the
fast convergence of the (z − 1)−1 expansion, because the fit becomes better as the number
of expansion terms is increased and (b) the fact that the topology of the Bethe lattice, being
quite different from the regular lattice, is somehow capable to capture the correlations of the
regular lattice by an adjustment of the coordination number to a lower integer value.
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Figure 2. Comparison of σ (I) given by equation (12) (z = 3, 4) with the exact solution of
anisotropic RRN on the square and cubic lattice for three magnitudes of the local anisotropy,
a = σ⊥/σ‖ = 0.3, 0.5 and 0.7. The concave and convex curves represent macroscopic conductivity
in the direction of larger and smaller local conductivity, σ‖ and σ⊥, respectively.

5. Comparison with experimental data

It is well known that the Kirkpatrick’s [2] effective medium approximation (EMA),
σ̄ ∼ (p − pc)/(1 − pc), is the most convenient first-order approximation widely used for
experimental data far from the percolation threshold [31, 32]. Also, near the percolation
threshold, the empirically observed law is σ̄ ∼ (p/pc − 1)t , where t is approximately equal to
2 for 3D systems [24, 33, 34]. The Bethe lattice theory, thanks to Stinchcombe [17], readily
explains the presence of both regimes: (p − pc)/(1 − pc) and (p/pc − 1)2. It is therefore not
surprising that, in the view of its elegance, the Bethe lattice has been used by us as the central
paradigm of the network modeling.

The discrepancy of the critical exponent of 2 with the mean–field value of 3 suggested by
de Gennes [19] is not completely clear, but can be resolved once both tree and regular lattice
problem are defined in the same class of physical models. De Gennes considers the system
confined by the correlation length ξ and calculates the current through the hypersurface ξd−1

in d-dimensional space. On the other hand, we, who follow Stinchcombe, employ the Bethe
lattice model neglecting the surface effects by definition. To make our point clear, we note that
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the surfaces may belong to a microscopic or macroscopic scale in general. Since the infinite
branching Cayley tree cannot be embedded in a finite-dimensional space, the macroscopic
surfaces in 3D are not the surface sites of the Cayley tree. On the other hand, the microscopic
surfaces could, in principle, be captured by the Cayley tree, but not by the Bethe lattice where
the surface sites are neglected by definition and z = const. Regarding the critical exponents,
Bethe lattice approximation captures only weak correlations which is usually not sufficient at
the critical point, but the approximation is better than the mean-field [29]. The exact mean-
field limit is achieved when z → ∞. Thus, in general, the Bethe lattice critical exponents
are of specific nature, which implies that they may or may not coincide with the real values.
An example of the coincidence can be found in the classical Flory–Stockmayer theory of
sol-gel transition where the critical exponents σ and τ are found to be close to the real values
of 3D [30].

6. Macroscopic versus microscopic

This section is devoted to the analysis of the paper by Straley [13]. There one finds the
statement: ‘ . . . the macroscopic conductivity is the average current in a link in the presence of
a unit external electric field’. Let us analyze this definition carefully on the anisotropic Bethe
lattice. The local current through the potential difference between two neighboring nodes is
given by

I n
α,β = (

V n−1
α,β − V n

α,β

)
σα,β,

so that the macroscopic conductivity is found from

n
α,β = (Qn − 1)σα,β,

where

n
α,β = I n

α,β

V n
α,β

and Qn = V n−1
α

V n
α

= V n−1
β

V n
β

.

The fact that Qn is independent of α and β follows from the occupation probability p being
independent of those indices. For simplicity, we show the proof only for the case of fully
occupied, p = 1, Bethe lattice. With the help of Kirchoff’s law which states that the sum of
the currents on each internal site is zero,

Vi =
∑

j σijVj∑
ij σij

,

the formulation of the problem in terms of the recurrent relations is straightforward. For
instance, for the case of coordination number z = 4 we have the following recursive relations:

V n
α = V n+1

α σα + 2V n+1
β σβ + V n−1

α σα

2σα + 2σβ

,

V n
β = V n+1

β σβ + 2V n+1
α σα + V n−1

β σβ

2σα + 2σβ

.

Dividing both sides of the equations by V n−1
α and V n−1

β , respectively, gives the recursive
relations for the ratios Qn

α,β = V n+1
α,β

/
V n

α,β and Yn
α,β = V n+1

α,β

/
V n

β,α . Performing the iterations
from an arbitrary initial values of the ratios, one finds Qn

α,β being independent of α and
β,Qn

α,β = Qn. In the limit of very large number of iterations, one arrives to the fixed point
Qn → Q with the conductivity expressed as

α,β = (Q − 1)σα,β,

8
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which tells us that the ratio of the conductivities in two directions is just the ratio of the
conductive elements:

α/β = σα/σβ.

Here, the factor Q − 1 measures the average ratio of potentials of two neighboring nodes
which gives the average current in a link. We note that this is the maximum value anisotropy
as a function of p assuming that the resistors are distributed homogeneously. While this
relationship is the correct one for the regular lattice, this model fails to explain considerably
higher values of macroscopic anisotropy of the Earth mantle as compared to the microscopic
ones. Presuming that the distribution of conductive inclusions is homogeneous, only a fractal
structure could possibly explain this experimental observation. Thus, the definition of the
macroscopic conductivity on the Bethe lattice proposed by Straley seems to be incapable of
accounting for the anisotropy growth upon the change from the microscopic to the macroscopic
scale.

7. Discussion and conclusions

We propose the model of the resistor network that has a property of anisotropy in a sense that the
conductivities of the resistors differ with respect to the lattice bond type. We solve the problem
in the framework of the anisotropic Bethe lattice approximation. The mathematical problem
is formulated in terms of a nonlinear integral equation, which is solved asymptotically using
series expansions in two limiting cases: near the percolation threshold and near the mean-field
limit of z → ∞.

It seems that the Bethe lattice may be a suitable model for the conductivity anisotropy of
geological resistor networks far from the percolation threshold. Generally speaking, a Bethe
lattice branch, see figure 1, is one of many possible models of a statistically homogeneous
random graph. By homogeneity we mean allowing for only very small fluctuations of
coordination numbers of the nodes. For the purpose of the large-scale characterization of
the network, the coordination numbers of different nodes (vertices) can be approximately
considered as uniform and equal to an average value. One possibility is to use the wholly tree-
like structure in which the average shortest path length scales as a power of the total number
of vertices [35]. Another possibility would be to use the model of small-world network where
the average shortest path is signified by the logarithmic dependence on the graph size [36].
These are two theoretical examples of the different specific classes of real-world networks
empirically observed. The significant anisotropies observed in geophysics at the macroscale
could be explained by the formation of fractal structures in a microscale. In the present model,
the macroscopic observable anisotropy is the property of the entire network and the local
(intrinsic) anisotropy is associated with the anisotropy in conductivity at a branching point of
the Bethe lattice. The former is defined as a = σβ/σα , whereas the latter is essentially the
ratio a = σβ/σα being the only parameter entering equations (6), (7) and (12). We find that the
present theory is capable of producing the strong global anisotropy, a, at small local anisotropy,
a, in the case when z is large and p 
 pc. Indeed, in this limit, the conductivity is given
by the mean-field formula: σα(I) ≈ zpσ 2

α

/
(σα + σβ), which yields a(I) ≈ a2. In many cases,

the dynamical networks are driven to criticality, but the networks driven far away from the
critical point are also realizable in principle and possible to occur in nature. Interestingly, the
previous theories based on anisotropic occupation probability [7, 10] predicted the opposite:
at strong local anisotropy—weak global one.

In the course of our derivation, we employed the approximation that the number of the
special directions n remains finite as z → ∞. Although it is not possible to give a simple
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geometrical picture relating n to some normal space coordinates, since Bethe lattice cannot
be embedded in a finite-dimensional space, the number n seems to be associated with the
the number of possible directions of the spanning cluster near the percolation threshold. The
problem needs to be resolved on more rigorous topological grounds.
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Appendix A. Anisotropic Bethe lattice theory

This section is essentially the anisotropic generalization of [17] with the intermediate steps
shown explicitly in [37]. For a branch starting from an α-bond and its z − 1 next-generation
subbranches (see figure 1), the set of conductivities is defined:{

b(i)
α

} = b(0)
α , b(1)

α , . . . , b(nα−1)
α , b

(nα)
β , . . . , b

(z−1)
β ,

which are zero or finite accordingly as the corresponding root bonds are empty or occupied,
where the index i = 0 is reserved for the branch origin. These subbranches are connected in
parallel, so that the conductivities b(0)

α are given by

b(0)
α =

nα−1∑
i=1

σαb(i)
α

σα + b
(i)
α

+
z−1∑
i=nα

σβb
(i)
β

σβ + b
(i)
β

. (A.1)

Both b(i)
α

(
b

(i)
β

)
and σα (σβ), which are the branch and bond conductivities, respectively, are

random variables distributed with some probability density functions. In order to determine the
branch distribution functions φα(b(0)) defined in (3) and (4), we average over various resistor
configurations on the lattice using the distribution functions φα(b(i)) and gα(σ (i)) defined for
the conductivities of subbranches and individual bonds, respectively, so that

gα(σ ) = p δ(σ − σα) + (1 − p)δ(σ ). (A.2)

Being more specific we determine φα(b) (note that the superscript (0) is suppressed for brevity)
by performing an asymptotic analysis of

φα(b) =
nα−1∏
i=1

(∫ ∞

0
dσ (i) gα(σ (i))

∫ ∞

0
db(i) φα(b(i))

)

×
z−1∏
i=nα

(∫ ∞

0
dσ (i) gβ(σ (i))

∫ ∞

0
db(i) φβ(b(i))

)
δ
(
b − b(0)

α

)
. (A.3)

Since φα(b) is actually a series of delta functions, it is convenient to introduce the Laplace
transform of φα(b), generally known as the moment-generating function

Bα(q) ≡
∫ ∞

0
e−qbφα(b) db. (A.4)

In the present study, this quantity is named the branch-generating function. Equation (A.4)
combined together with (4) leads to

b̄α = −B ′
α(0), (A.5)

10
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which means the average branch conductivity is just the negative first derivative of Bα(q)

evaluated at q = 0. Taking the Laplace transform of equation (A.3), it can be shown that

Bα(q) = Cα(q)nα−1Cβ(q)nβ , (A.6)

where

Cα(q) =
∫ ∞

0
dσ gα(σ )

∫ ∞

0
db φα(b) exp

(
− qσb

σ + b

)
. (A.7)

Therefore, on account of (A.6), Cα(q) and Cβ(q) can be named the subbranch generating
functions and, in analogy with (A.5), one can define the subbranch average conductivity as

b̄(i)
α = −C ′

α(0). (A.8)

Since φα(b) and gα(σ ) are the probability densities normalized to unity, see (3) and (A.2),
respectively, the boundary condition for Cα(q) at q = 0 is

Cα(0) = 1. (A.9)

The other boundary condition at q = ∞ is identified as the probability of having the finite
cluster, R, since the main contribution to the integral (A.7) comes from the neighborhood of
b = 0 or σ = 0:

Cα(∞) = R. (A.10)

After some algebra [17] which involves an additional Laplace transform that introduces a new
variable t, one obtains the integral equation∫ ∞

0
e−tqCα(q) dq =

∫ ∞

0
dσ gα(σ )(t + σ)−1

×
[

1 +
σ 2

t + σ

∫ ∞

0
exp

(
− qσ t

σ + t

)
Bα(q) dq

]
(A.11)

which is the final exact result to be solved asymptotically.

Appendix B. Near-mean-field expansion

Consider the integrals on both sides of equation (A.11). These integrals will be approximated
for large t values using the Laplace method [38]. The method is based on the idea that the
main contribution to the integrals comes from the neighborhood of q = 0, which makes it
possible to use the Taylor series expansion as follows:

Cα(q) = eln[Cα(0)+qC ′
α(0)+···]

= eqC ′
α(0)

[
1 +

∞∑
l=2

a(l)
α ql

]
, for q  1. (B.1)

This defined the coefficients a(l)
α . In addition, we have the d(l)

α coefficients given by

Cα(q)m = emqC
′
α(0)

∞∑
l=0

d(l)
α ql, (B.2)

where d(0)
α = 1. Substituting (B.2) and its conjugate β analog into (A.6) and then using this

in (A.11), one obtains∫ ∞

0
e−tqCα(q) dq =

∫ ∞

0
du gα(u)

{
1

t − τα(u)
+

u2

(t + u)2

∞∑
k=2

d(k)
α

k!

sk+1
α

}
, (B.3)

11
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where

sα = ut

u + t
− (nα − 1)C ′

α(0) − nβC ′
β(0), (B.4)

τα(u) = u[(nα − 1)C ′
α(0) + nβC ′

β(0)]

u − (nα − 1)C ′
α(0) − nβC ′

β(0)
. (B.5)

Formula (B.3) represents an expansion in inverse powers of z which is seen from (B.4) and
(B.5). Inversion of the Laplace transform in (B.3) yields

Cα(q) =
∫ ∞

0
du gα(u) exp[qτα(u)]

×
[

1 +
∞∑

k=2

d(k)
α k!

k−1∑
r=0

k−1Cr

(k − r)!

u2(k−r)qk−r

[u − (nα − 1)C ′
α(0) − nβC ′

β(0)]2k−r

]
,

where k−1Cr are the binomial coefficients. The equation right above is combined with (B.1),
and then one equates term by term the factors of the successive powers of q and obtains

1 =
∫ ∞

0
du gα(u) (B.6)

for l = 0 and

0 =
∫ ∞

0
du gα(u)[τα(u) − C ′

α(0)] +
∞∑

m=2

d(m)
α I (m10)

α (B.7)

a(k)
α = a(k)0

α +
∞∑

m=2

d(m)
α

min{m−1, k−1}∑
s=0

I (mks)
α , k � 2, (B.8)

for l = 1, where

a(k)0
α =

∫ ∞

0
du gα(u)

[τα(u) − C ′
α(0)]k

k!
(B.9)

and

I (mks)
α = m! m−1Cs

(s + 1)! [k − (s + 1)]!

∫ ∞

0
du gα(u)

u2(s+1)[τα(u) − C ′
α(0)]k−(s+1)

[u − (nα − 1)C ′
α(0) − nβC ′

β(0)]m+s+1
. (B.10)

The first term on the right-hand side of (B.7) is the representation of the mean-field limit
z → ∞,

0 =
∫ ∞

0
du gα(u)[τα(u) − C

′
α(0)], (B.11)

and the sum over m gives the corrections in inverse powers of z. Two equations, obtained
by the interchange of α and β in (B.11), will be solved neglecting nα = n as it is a constant
negligibly small compared to z − 1. (Here, in order to keep up with the Stinchcome’s results,
we expand in powers of inverse z − 1 and not z, which is equivalent.) Solving (B.11) we get,
as the first solution, the isotropic mean-field conductivity:

C
′
α(0)iso = −σα(p − pc). (B.12)

Additionally, we obtain

C
′
α(0) = − σασβ(p − pc)p

σαpc + σβ(p − pc)
, (B.13)

which is the anisotropic solution of main interest for us.

12
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We now move to some elaboration regarding the orders of correction contained in (B.7)–
(B.10). One finds that I (210)

α d(2)
α is of the order (z−1)−2, since I (m10)

α and d(m)
α are of the orders

(z − 1)−(m+1) and (z − 1)m/2, respectively. Note that the correction to a(2)0
α given by the first

term of the sum in (B.8) affects I (210)
α d(2)

α by the (z − 1)−4 order. Thus, to have the final result
up to and including O([z − 1]−4), the first term in the sum given by (B.8) should be taken into
account, but only a(m)0

α can be used for m > 2. In addition, when approximating a(m)
α and

I (m10)
α with m > 2, we use the replacement C ′

α(0) = C
′
α(0). This is perfectly acceptable if

m > 2, since any correction to this would be of (z − 1)−2 order, and hence would contribute
to a(m)0

α as (z − 1)−2m. To compute the error introduced by this substitution for m = 2, we

expand Tα = I (210)
α a(2)0

α near T̄α = I
(210)

α a(2)0
α :

Tα = T̄α + (DαTα)�Cα + (DβTα)�Cβ, (B.14)

where �Cα = C ′
α(0) − C

′
α(0),DβTα = [∂Tα/∂C ′

β(0)]
C

′
β (0)

. Additionally, from (B.7) with

the term m = 2 only, one has

−T̄α = (DαAα)�Cα + (DβAβ)�Cβ, (B.15)

where DβAα = [
∂

∫
du gα(u)[τα −C ′

α(0)]/∂C ′
β(0)

]
C

′
β (0)

. The computation of the coefficients

yields

DαTα = −1 + O([z − 1]−1),

DβTα = 0,

DαAα = 0,

DβAα = (z − 1)I
(310)

α d
(2)0
α .

(B.16)

Equations (B.14)–(B.16) combined together give

Tα = T̄α

(
1 + (z − 1)I

(310)

α d
(2)0
α

T̄β

T̄α

)
= T̄α + O([z − 1]−4). (B.17)

Substituting this into (B.7), one obtains the expression that contains all corrections up to the
(z − 1)−4 order:

0 =
∫

gα(u)[τα(u) − C ′
α(0)] + (z − 1)a(2)0

α I (210)
α

×
{

1 + (z − 1)I (220)
α + (z − 1)2a(2)0

α I (310)
α

I
(210)
β

I
(210)
α

}

+ I (310)
α d(3)0

α + I (410)
α d(4)0

α + I (510)
α d(5)0

α + I (610)
α d(6)0

α . (B.18)

Direct computation of equations (B.9) and (B.10) yields

a(m)0
α = 1

m!
(−1)mC

′
α(0)m(1 − p)

[
1 + (−1)m

(
1 − p

p

)m−1
]

, (B.19)

I
(m10)

α = m![C
′
α(0) + σαp]m+1

σm−1
α p m

(B.20)

I
(220)

α = 2(1 − p)C
′
α(0)[C

′
α(0) + σαp]3

σαp 2
. (B.21)

13
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Finally, substituting (B.19)–(B.21) into (B.18) and using (A.5), we get the anisotropic
conductivity in the form of a series expansion in successive powers of the inverse coordination
number:

bα(I) = −σα

(
− pσβ�

σαpc + σβ�
+

�

p

∞∑
n=2

G(n)

)
, (B.22)

where

G(2) = p2
c

p2
�s,

G(3) = p3
c

p5
�2s[p(2p − 1) + 3�s],

G(4) = p4
c

p6
�2s

[
3s2� − 2sp + �(1 − 3p + 3p2)

+ 10�2s

(
2p − 1

p

)
+ 15�3s2 1

p2

]
,

G(n) = O
(
pn

c

)
,

� = p − pc and s = 1 − p.

(B.23)

Expansion (B.23) coincides with the result of [17] except that factor 5 in front of �2s
( 2p−1

p

)
for G(4)

α needs to be replaced by 10 according to us.

Appendix C. Investigation of critical indices

In this appendix, we investigate the critical exponents by means of an asymptotic analysis of
the integral equation (A.11) for p approaching pc from above introducing a small parameter

ε = p − pc

pc

. (C.1)

On the one hand, it is known [24] that the percolation probability P, defined on the Bethe
lattice as P = 1 − Rz, can be expanded near the percolation threshold in series:

P(ε) = Bε + Cε2 + O(ε3),

where B and C are constants and hence

R = 1 − δ(1)ε − δ(2)ε2 + O(ε3). (C.2)

Here,

δ(1) = 2/(z − 2), (C.3)

while the numerical value of δ(2) has no significance for us, as shown in the analysis set forth
below.

On the other hand, the anisotropic conductivity expansion in terms of ε has not been
previously addressed. Motivated by the analysis of [17], we propose a trial solution to (A.11)
of the form

Cα(q) = R + εC(1)
α (q) + ε2C(2)

α (q), (C.4)

where C(1,2)
α (q) are slowly varying functions of q described by the scaling relations

C(1,2)
α (q) = f (1,2)

α (cαεq), (C.5)

with cα being a constant to be determined later.
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Now the variables s = t/(cαε) and y = cαεq are defined. Substituting (C.2) and (C.4) on
the left-hand side of (A.11), multiplying both sides by t and expressing the integrals in terms
of the new variables, one finds∫ ∞

0
e−sy[Cα(y) − 1] dy = pc

σα(1 + ε)

(σα + cαεs)2

×
∫ ∞

0
exp

(
− syσα

σα + cαεs

){
Cnα−1

α C
nβ

β − 1
}

dy, (C.6)

where Cα(y) are given by (C.4) and (C.5). A set of equations is obtained equating the
ε-expansion coefficients of the same order on the left- and right-hand side of the integral
equation (C.6). Firstly, equating the terms linear in ε we obtain

f (1)
α (y) = pc

[
(nα − 1)f (1)

α (y) + nβf
(1)
β (y)

]
. (C.7)

As a result, the first correction is isotropic:

f (1)
α (y) = f

(1)
β (y) ≡ f (1)(y). (C.8)

Secondly, equating the terms proportional to ε2 and using (C.8) yields∫ ∞

0
e−syf (2)

α (y) dy =
∫ ∞

0
dy e−sy

{
1

δ(1)
(f (1) − δ(1))2 + (f (1) − δ(1))

×
[

1 +
cα

σα

(−2s + s2y)

]
+ pc

[
(nα − 1)f (2)

α + nβf
(2)
β

]}
. (C.9)

Isotropic solution. When substituting cα = σα , we recover the isotropic solution f (2)
α =

f
(2)
β = f (2) satisfying∫ ∞

0
e−syf (2)(y) dy =

∫ ∞

0
dy e−sy

{
1

δ(1)
(f (1) − δ(1))2 + (f (1) − δ(1))[1 − 2s + s2y]

+ pc[(nα − 1)f (2)(y) + nβf (2)(y)]

}
and

0 =
∫ ∞

0
dy e−sy

{
1

δ(1)
(f (1) − δ(1))2 + (f (1) − δ(1))[1 − 2s + s2y]

}
. (C.10)

This gives a simple solution:

f (1)(y)iso = δ(1)ξ(y), (C.11)

where ξ is determined by solving numerically the differential equation of the second order:

yξ ′′ = ξ(1 − ξ), ξ(0) = 1, ξ(∞) = 0, (C.12)

which gives ξ ′(0) = −0.762.

Anisotropic solution. Here, we try cα �= σα in (C.9) to obtain another solution. To simplify
(C.9), we combine it with (C.10), which yields∫ ∞

0
e−syf (2)

α (y) dy =
∫ ∞

0
e−sy

{
(f (1) − δ(1))

[
cα

σα

− 1

]
(−2s + s2y)

+ pc

[
(nα − 1)f (2)

α (y) + nβf
(2)
β (y)

]}
dy.

From this equation it follows that

f (2)
α − pc

[
(nα − 1)f (2)

α + nβf
(2)
β

] = cα − σα

σα

δ(1)xξ ′′(x), (C.13)
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where x is an arbitrary variable. The quantities f (2)
α (x) and f

(2)
β (x) have to be symmetric with

respect to the α ↔ β interchange. This condition is satisfied only in the following two cases:

nασβ = nβσα, (C.14)

cα = σβ, (C.15)

or

nα = nβ, (C.16)

cα = 2σασβ/(σα + σβ). (C.17)

The second set of conditions, equations (C.16) and (C.17), is inappropriate here due to the
condition z 
 n utilized in appendix B. Hence, from (C.14) we have

nα = zσα/(σα + σβ), nβ = z − nα. (C.18)

Substitution of (C.18) into (C.13) yields

f (2)
α (x) − f

(2)
β (x) = −δ(1)xξ ′′(x)

z − 1

z

σ 2
α − σ 2

β

σασβ

. (C.19)

The latter is symmetric with respect to the reversal of α and β. Finally, combining (C.4),
(C.5), (C.3), (C.11) and (C.15), we write the anisotropic solution:

Cα(q) = R +
2

z − 2
ξ(σβεq)ε + f (2)

α (σβεq)ε2. (C.20)

Then, using (A.5), (5) and (C.18), we obtain the average conductivity up to and including the
ε3 order:

σα(II) = zσα

σα + σβ

{
0.762

2

z − 2
σβε2 − σβf (2)′

α (q)ε3

}
+ Cε3, (C.21)

where C is a constant which could be determined by equating the terms proportional to ε3 in the
expansion of equation (C.6). As a result, the first term in the expansion (C.21), proportional
to ε2, is the symmetric one. In addition, we can calculate the difference in the derivatives of
f (2)

α and f
(2)
β using equations (C.19) and (C.12), which yields

σα − σβ = 0.762
2(z − 1)

z − 2
(σα − σβ)ε3. (C.22)

Therefore, we have

σα − σβ

σβ

= z − 1

z

σ 2
α − σ 2

β

σασβ

ε. (C.23)
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